Towers and gaps at uncountable cardinals

نویسندگان

چکیده

Our goal is to study the pseudo-intersection and tower numbers on uncountable regular cardinals, whether these two cardinal characteristics are necessarily equal, related problems existence of gaps. First, we prove that either $\mathfrak p(\kap

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Definable Tree Property Can Hold at All Uncountable Regular Cardinals

Starting from a supercompact cardinal and a measurable above it, we construct a model of ZFC in which the definable tree property holds at all uncountable regular cardinals. This answers a question from [1]

متن کامل

Cofinality and Measurability of the First Three Uncountable Cardinals

This paper discusses models of set theory without the Axiom of Choice. We investigate all possible patterns of the cofinality function and the distribution of measurability on the first three uncountable cardinals. The result relies heavily on a strengthening of an unpublished result of Kechris: we prove (under AD) that there is a cardinal κ such that the triple (κ, κ+, κ++) satisfies the stron...

متن کامل

All Uncountable Regular Cardinals Can Be Inaccessible in Hod

Assuming the existence of a supercompact cardinal and an inaccessible above it, we construct a model of ZFC, in which all uncountable regular cardinals are inacces-

متن کامل

Mrówka Maximal Almost Disjoint Families for Uncountable Cardinals

We consider generalizations of a well-known class of spaces, called by S. Mrówka, N ∪R, where R is an infinite maximal almost disjoint family (MADF) of countable subsets of the natural numbersN . We denote these generalizations by ψ = ψ(κ,R) for κ ≥ ω. Mrówka proved the interesting theorem that there exists an R such that |βψ(ω,R) \ ψ(ω,R)| = 1. In other words there is a unique free z-ultrafilt...

متن کامل

The tree property at double successors of singular cardinals of uncountable cofinality

Assuming the existence of a strong cardinal κ and a measurable cardinal above it, we force a generic extension in which κ is a singular strong limit cardinal of any given cofinality, and such that the tree property holds at κ++.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fundamenta Mathematicae

سال: 2022

ISSN: ['0016-2736', '1730-6329']

DOI: https://doi.org/10.4064/fm109-9-2021